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Abstract

In this paper, we study, by a Monte Carlo simulation, the effect of the order p of
“Zhurbenko-Kolmogorov” taper on the asymptotic properties of semiparametric esti-
mators. We show that p = [d + 1/2]+1 gives the smallest variances and mean squared
errors. These properties depend also on the truncation parameter m. Moreover, we
study the impact of the short-memory components on the bias and variances of these
estimators. We finally carry out an empirical application by using four monthly sea-
sonally adjusted logarithm Consumer Price Index series.
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1 Introduction

After the seminal papers of Granger and Joyeux (1980) and Hosking (1981), fractional in-
tegration processes (I (d)) have attracted the attention of many statisticians and econome-
tricians. These long-range dependence processes give more flexibility to empirical research
than the classical I (0) and I (1) classes of processes.

For 0 < d < 1/2, they are stationary with hyperbolic decay of the autocorrelation
function and they exhibit long memory or long-range dependence. for d ≥ 1/2, they are
nonstationary. To estimate d, we usually use the semiparametric methods developed by
Geweke and Porter-Hudak (1983) (henceforth referred to GPH).1

∗Correspondance: Lëıla NOUIRA, GREQAM, Université de la Méditerranée, Centre de la Vieille Charité,
2 Rue de la Charité, 13002 Marseille, France. Tél.: +33 4 91 14 07 21, fax: +33 4 91 90 02 27. E-mail:
leila.nouira@univmed.fr.

1They are called semiparametric in the sense that the spectral density is parameterized only within a
neighbourhood of zero frequency.
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Agiakloglou et al. (1993) showed that this estimator has a large bias. Reisen (1994),
Robinson (1994, 1995a, b) and Lobato and Robinson (1996) give some estimators with a
small bias.

Many economic time series exhibit a nonstationary behavior, so it will be necessary
to extend the concept of long memory to the nonstationary framework, (see Cheung and
Lai (1993), Maynard and Phillips (2001) and Phillips (2005)). Hurvich and Ray (1995)
argued, by simulation, that the GPH estimator is consistent only when d < 1. Kim and
Phillips (1999) showed this result theoretically. In the same context, Velasco (1999a) showed
the consistency and the asymptotic normality of the Robinson (1995a) estimator for d ∈
[1/2, 3/4]. To overcome the non-consistency problem, Hurvich and Ray (1995) and Velasco
(1999a) suggested the use of data tapering, which was first proposed by Cooley and Tukey
(1965) and discussed by Cooley et al. (1967) and Jones (1971).2 This technique has also
been used by many authors, such as Hurvich and Chen (2000), Giraitis and Robinson (2003),
Sibbertsen (2004), Olhede et al. (2004), among many others.

For any value of d, Velasco (1999a) showed that if the order p of the taper is greater
or equal to [d + 1/2] + 1, then the estimator is consistent and asymptotically normal. The
aim of this paper is to study the effect of p on the properties of semiparametric methods
(GPH (1983) and Robinson (1995a, b)) by using a “Zhurbenko-Kolmogorov” taper. We then
determine the optimal choice of p. We will study also the impact of the short-memory
component on the properties of these estimators and finally, we extend the results given by
Boutahar et al. (2006) to the nonstationary case.

The paper is organized as follows. In the next section, we briefly introduce the non-
stationary ARFIMA (0, d, 0) process as well as the definition of the tapering procedure.
Section 3 describes the GPH and the Robinson (1995a, b) methods. The simulation results
are given in section 4. In section 5, we analyze the monthly seasonally adjusted logarithm
CPI data for fourth countries, France, Italy, Germany and U.S.. Section 6 concludes the
paper.

2 Nonstationary time series and data tapers

Let {Xt} be the ARFIMA (0, d, 0) process generated by

(1−B)d Xt = εt, εt ∼ i.i.d.
(
0, σ2

ε

)
, d ∈ IR, (2.1)

where

(1−B)d =
∞∑

k=0

(
d
k

)
(−B)k = 1− dB − 1

2
d (1− d) B2 − 1

6
d (1− d) (2− d) B3.... (2.2)

For −1/2 < d < 1/2, {Xt} is stationary and invertible. Its spectral density f (λ) satisfies

2The tapering was originally used in nonparametric spectral analysis of short-memory time series to
reduce the bias. It can be used in both stationary and nonstationary cases.
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f (λ) ∼ G |λ|−2d as λ → 0+, (2.3)

where G is a positive constant.3 When d ≥ 1/2, let s =
[
d + 1

2

]
, following Hurvich and Ray

(1995), a nonstationary process {Xt} exhibits a long memory if ∆sXt = ε
(s)
t , is stationary

with spectral density satisfying

fε(s) (λ) ∼ Gλ−2(d−s) as λ → 0+. (2.4)

In the nonstationary case, f (λ) does not exist, but we can define a ”pseudo spectral
density” as following4

f (λ) = |1− exp (iλ)|−2s fε(s) (λ) . (2.5)

To reduce the bias of the periodogram, Cooley and Tukey (1965) suggested the use of
tapering. It consists of multiplying the data by a sequence of non-negative weights, called
a “taper” or “fader” or “data window”. It takes values around 1 for the central part of
the data, and decays smoothly to 0 at both the beginning and the end of the sample. The
tapered discrete Fourier transform of {Xt}t=1,2,...,n, for any taper sequence {ht}n

t=1, is defined
as

wT (λj,n) =

(
2π

n∑
t=1

h2
t

)−1/2 n∑
t=1

htXt exp (iλj,nt) , (2.6)

where λj,n = 2πj
n

, ∀ j = 1, 2, ...,
[

n−1
2

]
, and then the tapered periodogram is IT (λj,n) =∣∣∣wT (λj,n)

∣∣∣2. The usual discrete Fourier transform w (λj,n) is obtained by setting ht ≡ 1 ∀ t.
There exist many data tapers, such as, the “cosine bell” taper, the “Zhurbenko-Kolmogorov”
taper and the “Parzen” taper (see Brillinger (1975), Alekseev (1996) and Velasco (1999a),
for more examples). To implement the taper, we must know its order p, (a positive integer
related to the smoothness of the taper).

Definition 1. A sequence of taper {ht}n
t=1 is of order p, if the following two conditions

are satisfied

1.
n∑

t=1

h2
t = nb (n) , where 0 < b (n) < ∞,

2. For N = [n/p] , the Dirichlet Kernel DT (λ) satisfies

DT (λ) ≡
n∑

t=1

ht exp {iλt} =
a (λ)

np−1

(
sin [nλ/2p]

sin [λ/2]

)p

, (2.7)

3A more detailed description of a stationary ARFIMA (0, d, 0) processes can be found in Beran (1994)
and Boutahar et al. (2006).

4For more details concerning this nonstationary process, see for example Velasco (1999a).
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where a (λ) is a complex function and [.] is the integer part.

In this paper we are only interested by the “Zhurbenko-Kolmogorov” taper
{
hZK

t

}
. It is

based on p convolutions of the uniform density in 1, ..., n.5 This taper is proportional to the
coefficients cp,N (t) defined as

p(N−1)∑
t=0

ztcp,N (t + 1) =
(
1 + z + ... + zN−1

)p
=

(
1− zN

1− z

)p

.

When p = 1, hZK
t ≡ 1, so no tapering is performed. When p = 2, the taper sequence is

identical to “Bartlett” or “triangular window”

hZK
t = 1−

∣∣∣∣2t− n

n

∣∣∣∣ , t = 1, 2, ..., n. (2.8)

When p = 3, the
{
hZK

t

}
is the same as the “full cosine bell” taper

hZK
t =

1

2
{1− cos (2πt/n)} , t = 1, 2, ..., n. (2.9)

Finally when p = 4, it is very close to the “Parzen” taper

hZK
t =


1− 6

[∣∣∣2t−n
n

∣∣∣2 − ∣∣∣2t−n
n

∣∣∣3] , N < t < 3N,

2
{
1−

∣∣∣2t−n
n

∣∣∣}3
, t ≤ N or 3N ≤ t ≤ 4N,

(2.10)

with N = [n/4].6

3 The semiparametric methods

In this section, we are focusing on the GPH and Robinson (1995a, b) methods. We consider
a tapered periodogram by using the Fourier frequencies λj,n, where j is a multiple of the
order p (see Velasco (1999a)).

3.1 The Geweke and Porter-Hudak method

Geweke and Porter-Hudak (1983) have proposed an estimator based on log-periodogram
regression. Let

IT (λj,n) =
1

2π
∑n

t=1 h2
t

∣∣∣∣∣
n∑

t=1

htXt exp (iλj,nt)

∣∣∣∣∣
2

, (3.11)

5A good illustration is given in Velasco (1999a).
6For the graphical representations of the “Zhurbenko-Kolmogorov” taper with p = 1, 2, 3 and 4, see

Velasco (1999a), page 345.
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be the tapered periodogram of the process Xt at frequency λj,n = 2πj/n , where j = p,
2p, ..., m.7 The spectral regression of the tapered GPH estimator is computed by regressing a
number of log tapered periodograms on a constant and a nonlinear function of the frequencies,

ln
{
IT (λj,n)

}
= a− d ln

{
4 sin2 (λj,n/2)

}
+ ej, ej ∼ i.i.d.

(
−c, π2/6

)
, (3.12)

c = 0.5772..., is the Euler’s constant. The GPH estimator is given by,

d̂p
GPH =

∑
j=p,2p,..,m

(
Yj − Ȳ

)
ln
{
IT (λj,n)

}
∑

j=p,2p,..,m

(
Yj − Ȳ

)2 , (3.13)

where
Yj = − ln

{
4 sin2 (λj,n/2)

}
, and Ȳ = (1/ [m/p])

∑
j=p,2p,..,m Yj.

This estimator is consistent for −1/2 < d < 1/2 and is obtained without knowledge on
the distribution of the data generating process (DGP), moreover it does not require any
knowledge of the short-term component. However, it has some potential problems, such
that, its bias and variance depend on the number of frequencies m used for the estimation.
Usually, m = n0.5 which may not be the best choice and may lead to biased results. There
exists some theoretical work on this topic, but there is no easily applicable rule for the choice
of m.8

3.2 The Robinson (1995a) method

In order to reduce the bias of GPH estimator, Robinson (1995a) proposed a modified version
of this estimator, which discards the l first frequencies.9 The tapered Robinson (1995a)
estimator is given by

d̂p
Ra =

∑
j=(1+l)p,(2+l)p,..,m

(
Yj − Ȳ

)
ln {I (λj,n)}∑

j=(1+l)p,(2+l)p,..,m

(
Yj − Ȳ

)2 , 0 < l < m < n, (3.14)

with

Ȳ =
1

[m/p]− l

∑
j=(1+l)p,2p,..,m

Yj. (3.15)

There is no optimal choice for the parameters l and m, which induces an important
problem in the implementation of this method and can increase the bias of the estimator.

7m is equal to g (n), where limn→∞ g (n) = ∞, limn→∞ g (n) /n = 0 for example g (n) = nα, with
0 < α < 1. It is the number of frequencies that must take a value lesser than n/2.

8Taqqu and Teverovsky (1996) suggested plotting the estimates of d as a function of m which balances
bias versus variance and, if the plot flattens in a central region in which both the variance and the bias of
the estimate of d should be small, then we use the flat part for estimating d. Hauser (1997) showed that, in
the stationary case and in the presence of strong short-run effects, this bias in d̂ may be devastating.

9In this paper, we use for simulation and application, l = 4.
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3.3 The Robinson (1995b) method

Let Qp (G, d) be the objective function

Qp (G, d) =
p

m

∑
j=p,2p,..,m

{
log

(
Gλ−2d

j,n

)
+

IT (λj,n)

Gλ−2d
j,n

}
, (3.16)

and let ∆1 and ∆2, the lower and upper bound of the admissible values of d, such that,
−∞ < ∆1 < ∆2 < +∞,10 then we define the estimates of (Gp,dp) as following(

Ĝp, d̂p
Rb

)
= arg min

0<G<∞,d∈[∆1,∆2]
Qp (G, d) .

It can be shown that

d̂p
Rb = arg min

d∈[∆1,∆2]
Rp (d) , (3.17)

where

Rp (d) = log Ĝp (d)− 2d
p

m

∑
j=p,2p,..,m

log λj,n, and Ĝp (d) =
p

m

∑
j=p,2p,..,m

λ2d
j,nI

T (λj,n) .

This estimator requires the Normality of the process and its bias depends on the value
of the truncation parameter m.

3.4 General comments

In the stationary case, Hauser (1997) studied the properties of some semiparametric and
nonparametric tests for the fractional integration parameter d. He showed that the trimmed
Whittle likelihood exhibits high power for pure fractionaly integrated processes. Recently,
Boutahar et al. (2006) compared, by simulation, the performance of the various classes of
estimators. They found that only the semiparametric and the maximum likelihood methods
yield good results. Their main result is that the Robinson (1995b) method is to be prefered,
since it gives the smallest bias and mean squared errors.

Recall that Velasco (1999a, b), Kim and Phillips (1999) and Shimotsu and Phillips (2004)
studied the properties of these three estimators in the nonstationary case. They showed that
the consistency and the asymptotic normality properties can be obtained only for d < 3/4.
Moreover, Velasco (1999a, b) showed that the use of an adequate data taper, can extend
these properties to any values of the long memory parameter d.

Note that, the semiparametric estimators based on the data tapering are robust to the
presence of trends and structural breaks. However, they usually have a larger variances (1.5
times or more) than the untapered semiparametric ones.

10In Robinson (1995b), ∆1 and ∆2 can take a values −1/2 and 1 respectively.
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4 Monte Carlo Study

We generate 10000 realizations of a Gaussian ARFIMA (0, d, 0) process, taking d in the
interval [0.5, 2.0] with steps of 0.1.11 For some values of d (0.6, 1.2, 1.8), we vary the short-
memory parameters φ and θ (0.4, 0.8, 0.9, 0.95), and we simulate again an ARFIMA (1, d, 0)
as well as an ARFIMA (0, d, 1).12 We use three sample sizes n = 100, 500 and 1500, two
values of the truncation parameters m (m = n0.5 and m = n0.8) and four orders p = 1, 2, 3
and 4.13 For each realization, we compute the three estimators, ((3.13) , (3.14) and (3.17)),

hence we determine their average values
(
d̂p
)

(over the 10000 realizations) and their mean

squared errors (MSE). The results of the ARFIMA (0, d, 0) process are grouped in tables
1 − 6,14 whereas those of the ARFIMA (1, d, 0) and ARFIMA (0, d, 1) processes are in
tables 8− 11.

4.1 The analysis of the ARFIMA (0,d,0) results

The comparison of the three semiparametric estimators for different values of d and m,
shows that the Robinson (1995b) estimator gives the smallest bias and mean squared errors.
This result coincides with the stationary case, which was pointed out by Hauser (1997) and
Boutahar et al. (2006). We conclude that this estimator is the best for both stationary and
nonstationary cases.

• The bias and the MSE decrease as the sample size increases.

• For d ∈ [0.5, 1.0], the order p = 1 can give a good result. Velasco (1999a) and Kim
and Phillips (1999) showed that for this interval no tapering is needed to obtain a
consistent estimator for d. This result is confirmed by our simulation. As we explained
in section 2, when the order is 1, no tapering is performed, therefore for this interval
we do not need a taper to obtain a good results. We note that with p = 2, we obtain
a smaller bias than with p = 1 but a larger MSE.

• For 1.1 ≤ d < 1.5, the order p must be equal to 2, the MSE increases with p and
the bias decreases. For example (see table 5), for the Robinson (1995b) method, with
d = 1.2, p = 2, n = 500 and m = n0.5, the bias is 0.033, the standard error is 0.250 and
the MSE is 0.064, whereas with p = 4, they are respectively −0.005, 0.460 and 0.212.
In the same context and for 1.5 ≤ d < 2.0, the order p must be equal to 3. However
for d = 2.0, tables 1-6 show that we need only a taper of order 2.

11In our choice, we are restricted to d = 2.0 because, for a higher value of a long memory parameter d,
the deterministic component totally dominate the random one.

12In the stationary and nonstationary cases, these processes have the same memory parameter than the
ARFIMA (0, d, 0) ones.

13The series are simulated with the S-Plus function arima.fracdiff.sim.
14To save space, only the results for sample size n = 500 are given here, the others are supplied upon

request.
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• If p < [d + 1/2] + 1, then the tapered estimators (d̂p
GPH , d̂p

Ra, d̂p
Rb) converge always to

p. When p ≥ [d + 1/2] + 1, the bias of all estimators are positive (see tables 1 and 2).
For example, with n = 500, d = 1.6 and m = n0.5, the bias of GPH estimator is 0.100
for p = 3 and 0.080 for p = 4, and they are respectively 0.024 and 0.019 for m = n0.8.

Table 1 The GPH estimator with “Zhurbenko Kolmogorov” taper: ARFIMA (0, d, 0) with σ = 1.

m = n0.5 and n = 500
p = 1 p = 2 p = 3 p = 4

d d̂p
GPH SÊd MSE d̂p

GPH SÊd MSE d̂p
GPH SÊd MSE d̂p

GPH SÊd MSE
0.5 0.526 0.172 0.030 0.515 0.272 0.074 0.461 0.375 0.141 0.448 0.497 0.247
0.6 0.634 0.173 0.031 0.620 0.273 0.075 0.563 0.376 0.142 0.551 0.497 0.247
0.7 0.742 0.173 0.031 0.724 0.270 0.073 0.664 0.375 0.142 0.656 0.496 0.246
0.8 0.841 0.173 0.031 0.834 0.267 0.073 0.770 0.375 0.142 0.760 0.496 0.246
0.9 0.930 0.167 0.028 0.942 0.265 0.072 0.939 0.376 0.143 0.865 0.498 0.248
1.0 1.006 0.159 0.025 1.052 0.263 0.072 1.045 0.378 0.145 0.971 0.499 0.249
1.1 1.047 0.149 0.025 1.162 0.263 0.073 1.151 0.384 0.150 1.133 0.501 0.252
1.2 1.070 0.147 0.038 1.274 0.263 0.075 1.258 0.386 0.153 1.240 0.500 0.251
1.3 1.074 0.152 0.074 1.386 0.267 0.080 1.367 0.385 0.153 1.348 0.501 0.253
1.4 1.060 0.143 0.136 1.500 0.273 0.085 1.476 0.383 0.153 1.456 0.510 0.263
1.5 1.057 0.137 0.215 1.613 0.276 0.089 1.587 0.382 0.153 1.569 0.505 0.260
1.6 1.072 0.146 0.301 1.728 0.281 0.095 1.700 0.378 0.153 1.680 0.496 0.252
1.7 1.078 0.156 0.411 1.839 0.283 0.099 1.812 0.377 0.155 1.792 0.492 0.250
1.8 1.074 0.153 0.551 1.946 0.267 0.093 1.925 0.379 0.159 1.905 0.490 0.251
1.9 1.069 0.143 0.712 2.037 0.258 0.085 2.040 0.385 0.167 2.018 0.488 0.252
2.0 1.065 0.147 0.896 2.109 0.246 0.073 2.153 0.386 0.173 2.131 0.489 0.256

Table 2 The GPH estimator with “Zhurbenko Kolmogorov” taper: ARFIMA (0, d, 0) with σ = 1.

m = n0.8 and n = 500
p = 1 p = 2 p = 3 p = 4

d d̂p
GPH SÊd MSE d̂p

GPH SÊd MSE d̂p
GPH SÊd MSE d̂p

GPH SÊd MSE
0.5 0.512 0.060 0.004 0.504 0.090 0.008 0.506 0.111 0.012 0.508 0.130 0.017
0.6 0.617 0.062 0.004 0.605 0.089 0.008 0.607 0.112 0.012 0.608 0.130 0.017
0.7 0.723 0.065 0.005 0.707 0.089 0.008 0.708 0.112 0.012 0.709 0.130 0.017
0.8 0.829 0.068 0.005 0.807 0.088 0.008 0.809 0.112 0.013 0.809 0.130 0.017
0.9 0.926 0.063 0.005 0.909 0.088 0.008 0.910 0.112 0.013 0.907 0.130 0.017
1.0 1.002 0.054 0.003 1.012 0.088 0.008 1.012 0.112 0.013 1.010 0.131 0.017
1.1 1.040 0.060 0.007 1.115 0.088 0.008 1.113 0.113 0.013 1.108 0.131 0.017
1.2 1.051 0.078 0.028 1.218 0.088 0.008 1.215 0.114 0.013 1.210 0.131 0.017
1.3 1.045 0.089 0.073 1.322 0.088 0.008 1.317 0.114 0.013 1.312 0.131 0.017
1.4 1.033 0.089 0.143 1.426 0.090 0.009 1.419 0.113 0.013 1.414 0.133 0.018
1.5 1.025 0.075 0.231 1.531 0.091 0.009 1.521 0.113 0.013 1.516 0.132 0.018
1.6 1.029 0.088 0.333 1.639 0.094 0.010 1.624 0.113 0.013 1.619 0.131 0.017
1.7 1.031 0.090 0.456 1.747 0.097 0.012 1.727 0.113 0.014 1.722 0.130 0.017
1.8 1.026 0.087 0.607 1.857 0.097 0.013 1.830 0.113 0.014 1.824 0.130 0.017
1.9 1.021 0.067 0.777 1.957 0.093 0.012 1.933 0.113 0.014 1.927 0.129 0.018
2.0 1.020 0.071 0.965 2.031 0.086 0.008 2.037 0.113 0.014 2.030 0.129 0.018
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Table 3 The Robinson (1995a) estimator with “Zhurbenko Kolmogorov” taper: ARFIMA (0, d, 0)
with σ = 1.

m = n0.5, l = 4 and n = 500
p = 1 p = 2 p = 3 p = 4

d d̂p
GPH SÊd MSE d̂p

GPH SÊd MSE d̂p
GPH SÊd MSE d̂p

GPH SÊd MSE
0.5 0.521 0.302 0.092 0.507 0.728 0.530 0.516 1.299 1.688 0.460 2.003 4.014
0.6 0.629 0.304 0.093 0.608 0.727 0.529 0.620 1.298 1.685 0.565 2.004 4.017
0.7 0.735 0.301 0.092 0.709 0.729 0.532 0.722 1.300 1.690 0.665 2.005 4.021
0.8 0.836 0.304 0.094 0.811 0.730 0.533 0.827 1.301 1.693 0.770 2.006 4.025
0.9 0.928 0.305 0.094 0.913 0.731 0.535 0.863 1.299 1.689 0.876 2.007 4.029
1.0 0.996 0.302 0.091 1.016 0.731 0.535 0.964 1.299 1.689 0.978 2.008 4.028
1.1 1.034 0.296 0.092 1.118 0.729 0.532 1.064 1.299 1.689 1.077 2.009 4.037
1.2 1.051 0.260 0.090 1.224 0.728 0.531 1.165 1.300 1.691 1.176 2.011 4.045
1.3 1.050 0.235 0.118 1.332 0.728 0.531 1.264 1.301 1.694 1.278 2.013 4.053
1.4 1.036 0.185 0.167 1.440 0.729 0.533 1.361 1.302 1.697 1.379 2.015 4.060
1.5 1.035 0.168 0.244 1.544 0.731 0.536 1.458 1.303 1.700 1.478 2.018 4.073
1.6 1.036 0.155 0.342 1.655 0.733 0.540 1.556 1.303 1.700 1.677 2.020 4.086
1.7 1.033 0.152 0.468 1.775 0.735 0.536 1.654 1.303 1.700 1.788 2.021 4.092
1.8 1.031 0.160 0.618 1.871 0.737 0.548 1.751 1.302 1.698 1.900 2.017 4.078
1.9 1.021 0.130 0.790 1.954 0.741 0.552 1.849 1.303 1.700 2.010 2.010 4.052
2.0 1.019 0.117 0.976 2.012 0.893 0.798 1.963 1.412 1.995 2.016 2.030 4.121

Table 4 The Robinson (1995a) estimator with “Zhurbenko Kolmogorov” taper: ARFIMA (0, d, 0)
with σ = 1.

m = n0.8, l = 4 and n = 500
p = 1 p = 2 p = 3 p = 4

d d̂p
GPH SÊd MSE d̂p

GPH SÊd MSE d̂p
GPH SÊd MSE d̂p

GPH SÊd MSE
0.5 0.510 0.074 0.006 0.497 0.124 0.015 0.496 0.177 0.031 0.494 0.221 0.049
0.6 0.615 0.075 0.006 0.597 0.124 0.015 0.596 0.177 0.031 0.594 0.221 0.049
0.7 0.721 0.077 0.006 0.697 0.124 0.015 0.696 0.177 0.032 0.694 0.221 0.049
0.8 0.827 0.079 0.007 0.796 0.124 0.015 0.805 0.178 0.032 0.794 0.221 0.049
0.9 0.926 0.075 0.006 0.895 0.124 0.015 0.905 0.178 0.032 0.894 0.221 0.049
1.0 1.001 0.066 0.004 0.995 0.124 0.015 1.006 0.178 0.032 0.994 0.221 0.049
1.1 1.036 0.069 0.009 1.110 0.124 0.015 1.108 0.178 0.032 1.094 0.221 0.049
1.2 1.046 0.083 0.031 1.213 0.123 0.015 1.208 0.178 0.032 1.194 0.221 0.049
1.3 1.037 0.089 0.077 1.317 0.124 0.015 1.307 0.178 0.032 1.294 0.221 0.049
1.4 1.025 0.087 0.148 1.422 0.124 0.015 1.410 0.178 0.032 1.394 0.222 0.049
1.5 1.017 0.071 0.239 1.528 0.126 0.016 1.512 0.178 0.032 1.494 0.223 0.050
1.6 1.018 0.082 0.346 1.635 0.128 0.016 1.613 0.178 0.032 1.595 0.222 0.049
1.7 1.017 0.080 0.473 1.742 0.130 0.017 1.720 0.178 0.032 1.690 0.221 0.049
1.8 1.012 0.078 0.626 1.848 0.132 0.018 1.820 0.178 0.032 1.790 0.221 0.049
1.9 1.007 0.055 0.800 1.946 0.133 0.019 1.922 0.178 0.032 1.890 0.220 0.049
2.0 1.007 0.059 0.989 2.005 0.127 0.016 2.001 0.178 0.032 1.995 0.220 0.048
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Table 5 The Robinson (1995b) estimator with “Zhurbenko Kolmogorov” taper: ARFIMA (0, d, 0)
with σ = 1.

m = n0.5 and n = 500
p = 1 p = 2 p = 3 p = 4

d d̂p
GPH SÊd MSE d̂p

GPH SÊd MSE d̂p
GPH SÊd MSE d̂p

GPH SÊd MSE
0.5 0.507 0.145 0.021 0.484 0.253 0.064 0.488 0.342 0.118 0.485 0.457 0.212
0.6 0.612 0.146 0.021 0.582 0.252 0.064 0.590 0.343 0.119 0.590 0.457 0.212
0.7 0.717 0.145 0.021 0.688 0.251 0.063 0.690 0.343 0.119 0.690 0.458 0.211
0.8 0.822 0.142 0.021 0.795 0.251 0.063 0.790 0.344 0.119 0.814 0.458 0.212
0.9 0.919 0.136 0.019 0.906 0.250 0.063 0.890 0.344 0.119 0.920 0.461 0.214
1.0 0.989 0.127 0.016 1.012 0.250 0.063 0.990 0.345 0.119 1.026 0.461 0.213
1.1 1.047 0.120 0.017 1.122 0.250 0.063 1.090 0.347 0.120 1.082 0.459 0.211
1.2 1.080 0.121 0.029 1.233 0.250 0.064 1.210 0.348 0.121 1.195 0.460 0.212
1.3 1.089 0.129 0.061 1.335 0.252 0.065 1.285 0.350 0.123 1.291 0.463 0.215
1.4 1.077 0.130 0.121 1.446 0.255 0.067 1.419 0.350 0.123 1.394 0.472 0.222
1.5 1.075 0.133 0.199 1.551 0.256 0.070 1.529 0.348 0.122 1.514 0.468 0.219
1.6 1.089 0.144 0.282 1.651 0.255 0.072 1.640 0.346 0.122 1.618 0.464 0.216
1.7 1.098 0.157 0.387 1.765 0.250 0.072 1.748 0.345 0.122 1.720 0.463 0.215
1.8 1.095 0.153 0.521 1.862 0.242 0.069 1.855 0.344 0.123 1.819 0.462 0.214
1.9 1.090 0.151 0.679 1.950 0.232 0.064 1.981 0.344 0.125 1.918 0.461 0.213
2.0 1.084 0.159 0.863 2.081 0.222 0.056 2.064 0.461 0.217 2.095 0.345 0.128

Table 6 The Robinson (1995b) estimator with “Zhurbenko Kolmogorov” taper: ARFIMA (0, d, 0)
with σ = 1.

m = n0.8 and n = 500
p = 1 p = 2 p = 3 p = 4

d d̂p
Rb

SÊd MSE d̂p
Rb

SÊd MSE d̂p
Rb

SÊd MSE d̂p
Rb

SÊd MSE

0.5 0.505 0.050 0.003 0.497 0.073 0.005 0.502 0.092 0.008 0.495 0.110 0.012
0.6 0.610 0.051 0.003 0.600 0.073 0.005 0.604 0.092 0.008 0.596 0.110 0.012
0.7 0.715 0.053 0.003 0.702 0.073 0.005 0.702 0.092 0.008 0.695 0.110 0.012
0.8 0.817 0.054 0.003 0.803 0.073 0.005 0.797 0.092 0.008 0.796 0.110 0.012
0.9 0.914 0.050 0.003 0.903 0.073 0.005 0.897 0.092 0.008 0.899 0.110 0.012
1.0 1.000 0.042 0.002 1.007 0.073 0.005 0.999 0.092 0.008 1.000 0.110 0.012
1.1 1.048 0.047 0.005 1.099 0.073 0.005 1.099 0.092 0.009 1.102 0.110 0.012
1.2 1.068 0.067 0.022 1.205 0.074 0.006 1.203 0.092 0.009 1.204 0.110 0.012
1.3 1.065 0.084 0.062 1.306 0.074 0.006 1.303 0.092 0.009 1.305 0.110 0.012
1.4 1.050 0.090 0.130 1.408 0.075 0.006 1.406 0.092 0.009 1.407 0.110 0.012
1.5 1.041 0.084 0.218 1.513 0.076 0.007 1.509 0.092 0.009 1.509 0.110 0.012
1.6 1.044 0.096 0.318 1.615 0.078 0.007 1.606 0.092 0.009 1.606 0.110 0.012
1.7 1.046 0.102 0.438 1.723 0.080 0.008 1.705 0.092 0.009 1.706 0.110 0.012
1.8 1.040 0.097 0.586 1.828 0.080 0.009 1.806 0.092 0.009 1.807 0.110 0.012
1.9 1.035 0.083 0.755 1.931 0.076 0.008 1.904 0.093 0.009 1.908 0.110 0.013
2.0 1.032 0.089 0.944 2.025 0.069 0.005 2.034 0.093 0.010 2.023 0.111 0.013

• The order of taper has also an impact on the distribution of these three estimators.
To verify this claim, we plot the histograms of the Robinson (1995a) estimator for
d = 1.4, m = n0.8 using four different orders (p = 1, 2, 3, 4). The figure 1 shows that,
the distribution seems to be normal only for p = 2, 3 and 4, i.e. for p ≥ [d + 1/2] + 1.
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Figure 1: The histograms of the Robinson (1995a) estimator for d = 1.4, m = n0.8. a : p = 1,
b : p = 2, c : p = 3, d : p = 4.

• Given the previous comments, we conclude that the order p should be equal to [d + 1/2]+
1, and not higher, since the higher order yields large standard errors and also large
MSE.

• Despite an optimal choice of p, the bias and the MSE are worse with m = n0.5 than
with m = n0.8. Then, the truncation parameter m has an effect in the stationary as
well as the nonstationary case.

4.2 An optimal choice of the truncation parameter m

In the stationary case, Hurvich et al. (1998) argued that the optimal choice of m is cn0.8.
However our paper deals with nonstationary process, so m optimal will tend to be larger
than as given in Hurvich et al. (1998). To determine an optimal choice for m, we apply the
heuristic method proposed by Abadir et al. (2005) and can be described as follows:

We assume that m has the form m = cnδ. The optimal choice for m can be achieved by
an optimal choice for (c, δ). We can find c and δ by searching for the min MSE as function
of the long memory parameter:

1. In the first step, we choose a grid for the sample size n, G1 = (100, 200, 400, 600, 800)
and a grid for d, G2 = (0.6, 0.8, 1.2, 1.6). For n fixed in G1 and for each d in G2, we

choose some values for the parameter m,
(
m1

n, m
2
n, ...,m

k
n

)
. For each mi

n, 1 ≤ i ≤ k,15

we compute the MSE of the corresponding d̂: MSE (mi
n). We then compute (see

table 7):16

m̂n = min
1≤i≤k,d∈G2

MSE
(
mi

n

)
,

2. In the second step, we regress log (m̂n) on log (n) in the following regression

15The choice of k is arbitrary.
16To save space, only the results for sample sizes n = 100 and n = 800 are given here, the others are

supplied upon request.

11



log (m̂n) = log c + δ log (n) + errors.

The result indicates that ĉ = 1 and δ̂ = 0.868, so the optimal choice of m is given by
m̂ = n0.868.

Table 7 The heuristic method for the choice of m

The parameter m, n=100
d 20 25 30 35 40 45
0.6 0.0836 0.0508 0.0405 0.0322 0.0274 0.0237
0.8 0.0833 0.0506 0.0404 0.0322 0.0273 0.0237
1.2 0.0851 0.0520 0.0415 0.0333 0.0283 0.0248
1.6 0.1729 0.1006 0.0911 0.0681 0.0538 0.0492

The parameter m, n=800
60 150 250 300 350 390
0.0143 0.0049 0.0029 0.0025 0.0022 0.0021
0.0142 0.0049 0.0029 0.0025 0.0022 0.0021
0.0243 0.0072 0.0043 0.0037 0.0032 0.0030
0.0249 0.0074 0.0044 0.0038 0.0033 0.0031

It may be seen from the results above that, in order to obtain a semiparametric estimator
with good properties, one may choose the optimal pair (p, m). To see this, we plot, for
m = n0.5, n0.55, n0.6, n0.65, n0.7, n0.75, n0.8, n0.868,17 p = 1, 2, 3, 4 and d = 1.2, the MSE of
the three semiparametric estimators.

Figure 2: The MSE of the three semiparametric estimators for different values of m and for
ARFIMA (0, d, 0) process.

This figure shows that, if p = 1 (p < [d + 1/2] + 1), the MSE vary slowly with m.
Whereas if p ≥ [d + 1/2]+1, the smallest MSE is obtained for m = n0.868.18 The comparison

17m = n0.5 is the choice of GPH (1983), n0.55, n0.6, n0.65, n0.7 and n0.75 were suggested by Porter-Hudak
(1990) and Crato and De Lima (1994), m = n0.8 is the choice proposed by Hurvich et al. (1998) and finally
m = n0.868 is determined by the heuristic method suggested by Abadir et al. (2005).

18This choice of m is most preferable in our design.
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of the MSE for p = 2, 3 and 4, shows that the smallest one is obtained with p = 2 which is
equal to [d + 1/2] + 1.

4.3 The analysis of the ARFIMA (1,d,0) and ARFIMA (0,d,1)
results

Now, we consider the presence of the short-memory component. Only the results of the
Robinson (1995b) estimator are reported here. The same conclusions are obtained for the
GPH and Robinson (1995a) estimators. They are supplied upon request.

• For almost all cases, the estimator is negatively biased, with bias approximately equal
to p−d, when p < [d + 1/2]+1. Whereas it is positively biased when p ≥ [d + 1/2]+1.

• The short-memory components φ and θ have an important impact on the results, even
if we use the best choice of p. When φ and θ approach 1 in absolute value, the bias
and the MSE become worse.

• With a good choice of p, the estimates for ARFIMA (0, d, 1) processes have nice
properties than for ARFIMA (1, d, 0) processes. This leads us to conclude that, the
short-memory component φ has a larger negative effect on the properties of semipara-
metric estimators than the parameter θ of same size.
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Table 8 The Robinson (1995b) estimator with “Zhurbenko Kolmogorov” taper: ARFIMA (1, d, 0)
with σ = 1.

m = n0.5 and n = 1500
p = 1 p = 2 p = 3 p = 4

d φ d̂p
Rb

SÊ MSE d̂p
Rb

SÊ MSE d̂p
Rb

SÊ MSE d̂p
Rb

SÊ MSE

0.40 0.616 0.097 0.010 0.599 0.164 0.027 0.597 0.216 0.047 0.590 0.276 0.076
0.6 0.80 0.670 0.097 0.014 0.662 0.164 0.031 0.667 0.217 0.052 0.668 0.277 0.081

0.90 0.794 0.097 0.047 0.808 0.166 0.071 0.828 0.220 0.100 0.843 0.280 0.137
0.95 0.994 0.104 0.166 1.054 0.170 0.235 1.089 0.224 0.289 1.117 0.282 0.348
0.40 1.084 0.093 0.022 1.227 0.169 0.029 1.220 0.217 0.047 1.212 0.273 0.075

1.2 0.80 1.102 0.104 0.020 1.289 0.169 0.036 1.290 0.217 0.055 1.290 0.274 0.083
0.90 1.136 0.134 0.022 1.434 0.169 0.083 1.450 0.219 0.111 1.465 0.277 0.147
0.95 1.176 0.183 0.034 1.678 0.172 0.258 1.711 0.223 0.311 1.740 0.280 0.369
0.40 1.086 0.151 0.532 1.887 0.165 0.035 1.860 0.219 0.052 1.848 0.271 0.076

1.8 0.80 1.087 0.155 0.532 1.942 0.163 0.046 1.929 0.219 0.065 1.925 0.272 0.090
0.90 1.090 0.164 0.531 2.060 0.159 0.093 2.088 0.220 0.131 2.098 0.275 0.165
0.95 1.091 0.172 0.534 2.229 0.166 0.212 2.347 0.223 0.349 2.374 0.277 0.406

Table 9 The Robinson (1995b) estimator with “Zhurbenko Kolmogorov” taper: ARFIMA (1, d, 0)
with σ = 1.

m = n0.8 and n = 1500
p = 1 p = 2 p = 3 p = 4

d φ d̂p
Rb

SÊ MSE d̂p
Rb

SÊ MSE d̂p
Rb

SÊ MSE d̂p
Rb

SÊ MSE

0.40 0.765 0.031 0.028 0.762 0.044 0.030 0.767 0.056 0.031 0.768 0.063 0.032
0.6 0.80 1.188 0.044 0.348 1.218 0.051 0.385 1.224 0.063 0.394 1.230 0.072 0.402

0.90 1.313 0.085 0.515 1.399 0.050 0.642 1.405 0.062 0.652 1.410 0.070 0.661
0.95 1.321 0.131 0.537 1.498 0.047 0.809 1.503 0.059 0.818 1.507 0.066 0.828
0.40 1.095 0.102 0.024 1.366 0.044 0.026 1.368 0.055 0.031 1.370 0.063 0.033

1.2 0.80 1.130 0.181 0.037 1.820 0.051 0.386 1.825 0.063 0.395 1.831 0.071 0.403
0.90 1.120 0.182 0.040 2.000 0.050 0.643 2.006 0.062 0.653 2.011 0.070 0.663
0.95 1.099 0.160 0.036 2.097 0.047 0.807 2.104 0.058 0.821 2.110 0.066 0.832
0.40 1.032 0.088 0.598 1.974 0.043 0.032 1.972 0.055 0.033 1.975 0.062 0.035

1.8 0.80 1.032 0.093 0.598 2.293 0.112 0.256 2.427 0.063 0.397 2.433 0.071 0.406
0.90 1.030 0.081 0.598 2.333 0.728 0.314 2.608 0.061 0.657 2.614 0.069 0.667
0.95 1.031 0.096 0.599 2.294 0.200 0.284 2.707 0.058 0.827 2.713 0.066 0.838
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Table 10 The Robinson (1995b) estimator with “Zhurbenko Kolmogorov” taper: ARFIMA (0, d, 1)
with σ = 1.

m = n0.5 and n = 1500
p = 1 p = 2 p = 3 p = 4

d θ d̂p
Rb

SÊ MSE d̂p
Rb

SÊ MSE d̂p
Rb

SÊ MSE d̂p
Rb

SÊ MSE

0.40 0.608 0.097 0.009 0.590 0.163 0.027 0.587 0.216 0.047 0.579 0.275 0.076
0.6 0.80 0.554 0.098 0.011 0.528 0.164 0.032 0.517 0.216 0.053 0.502 0.275 0.085

0.90 0.430 0.100 0.038 0.387 0.165 0.072 0.360 0.217 0.104 0.330 0.275 0.148
0.95 0.233 0.104 0.145 0.161 0.169 0.221 1.113 0.219 0.285 0.065 0.277 0.362
0.40 1.057 0.130 0.037 1.219 0.169 0.029 1.211 0.217 0.046 1.202 0.273 0.074

1.2 0.80 1.059 0.123 0.036 1.157 0.169 0.030 1.141 0.217 0.050 1.124 0.272 0.080
0.90 1.057 0.126 0.036 1.017 0.172 0.063 0.985 0.218 0.093 0.953 0.272 0.135
0.95 1.061 0.135 0.037 0.792 0.175 0.197 0.738 0.220 0.262 0.687 0.274 0.338
0.40 1.081 0.144 0.537 1.878 0.166 0.034 1.850 0.219 0.050 1.837 0.271 0.075

1.8 0.80 1.070 0.133 0.550 1.824 0.168 0.029 1.781 0.219 0.048 1.760 0.271 0.075
0.90 1.044 0.100 0.580 1.695 0.174 0.041 1.627 0.221 0.079 1.589 0.271 0.118
0.95 1.020 0.068 0.612 1.477 0.180 0.136 1.380 0.225 0.227 1.323 0.274 0.302

Table 11 The Robinson (1995b) estimator with “Zhurbenko Kolmogorov” taper: ARFIMA (0, d, 1)
with σ = 1.

m = n0.8 and n = 1500
p = 1 p = 2 p = 3 p = 4

d θ d̂p
Rb

SÊ MSE d̂p
Rb

SÊ MSE d̂p
Rb

SÊ MSE d̂p
Rb

SÊ MSE

0.40 0.466 0.033 0.019 0.449 0.044 0.025 0.443 0.054 0.027 0.437 0.063 0.030
0.6 0.80 0.149 0.044 0.205 0.108 0.055 0.245 0.084 0.064 0.269 0.065 0.074 0.291

0.90 −0.011 0.049 0.375 −0.064 0.060 0.445 −0.096 0.067 0.489 −0.121 0.076 0.526
0.95 −0.146 0.051 0.559 −0.205 0.059 0.652 −0.238 0.064 0.707 −0.262 0.071 0.749
0.40 1.017 0.055 0.036 1.057 0.046 0.022 1.048 0.055 0.026 1.042 0.063 0.028

1.2 0.80 1.016 0.056 0.036 0.721 0.059 0.233 0.694 0.066 0.260 0.673 0.074 0.283
0.90 1.017 0.054 0.036 0.549 0.064 0.427 0.514 0.069 0.476 0.486 0.076 0.515
0.95 1.020 0.060 0.031 0.408 0.063 0.631 0.370 0.066 0.692 0.344 0.072 0.738
0.40 1.029 0.078 0.600 1.690 0.057 0.015 1.659 0.056 0.023 1.651 0.063 0.026

1.8 0.80 1.028 0.053 0.608 1.362 0.070 0.196 1.310 0.069 0.245 1.285 0.075 0.270
0.90 1.011 0.029 0.623 1.191 0.074 0.376 1.131 0.073 0.453 1.099 0.078 0.497
0.95 1.003 0.013 0.635 1.046 0.072 0.573 0.986 0.070 0.667 0.955 0.073 0.719

• The results show that with m = n0.8 the bias is larger than with m = n0.5 and the MSE
is smaller only for p ≥ [d + 1/2] + 1. Therefore we conclude that in the presence of
short-memory parameter, m must be smaller than n0.8. To verify this claim, we apply
again the heuristic method proposed by Abadir et al. (2005) and described above. The
results show that with an AR component, an optimal m is equal to n0.597, whereas with
MA component, it is equal to n0.605.19 In order to justify that, we plot for m = n0.5,
n0.55, n0.6, noptimal, n0.65, n0.7, n0.75, n0.8, p = 1, 2, 3, 4 and d = 1.2, the MSE of the
Robinson (1995b) estimator, and this for ARFIMA (1, d, 0) and ARFIMA (0, d, 1)
processes.

19The different results are supplied upon request.
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Figure 3: The MSE of the Robinson (1995b) estimator for different values of m and for
ARFIMA (1, d, 0) and ARFIMA (0, d, 1) processes.

This figure exhibits that for p ≥ [d + 1/2] + 1, the smallest MSE is obtained with
m = noptimal. We note here that our conclusion coincides, in the stationary case, with that
of Hauser (1997).

5 Application to the CPI data

We consider a series of logarithm of Consumer Price Index (CPI)20 in monthly frequencies,
for four countries: France, Italy, Germany and U.S., over the period 1957 : 1 to 2002 : 3
(n = 543 observations). The data source is the IMF’s International Financial Statistics. The
following table gives some descriptive statistics.

Table 12 The descriptive Statistics

France Italy Germany U.S.
Mean 1.602 1.407 1.775 1.662
Maximum 2.040 2.071 2.046 2.069
Minimum 0.995 0.737 1.470 1.260
Variance 0.120 0.242 0.031 0.082
E-Kurtosis 1.408 1.330 1.551 1.406
Skewness −0.177 −0.024 −0.187 −0.054
J.B 60.144 63.124 50.658 57.776
p-value (0.000) (0.000) (0.000) (0.000)

J.B is the Jarque-Bera Normality test.

20The CPI is an aggregate index of different prices in different sectors of economics. The series are
seasonally adjusted by x12 ARIMA process.

16



Figure 4: Graphs, Correlogram and Periodogram of the Original and First Differenced France
logarithm CPI Series.

Figure 5: Graphs, Correlogram and Periodogram of the Original and First Differenced Italy
logarithm CPI series.

Figure 6: Graphs, Correlogram and Periodogram of the Original and First Differenced Ger-
many logarithm CPI series.
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Figure 7: Graphs, Correlogram and Periodogram of the Original and First Differenced
U.S.logarithm CPI series.

There is an overwhelming evidence that the fourth CPI series have non-normal distribu-
tions, as shown by the Jarque-Bera statistics. The correlograms and the periodograms of the
series in first difference, (see figures 4, 5, 6 and 7), show a typical features of long-memory
processes. The results of the stationarity tests21 are given in table 13. Those tests are nec-
essary to determine the order of differencing s and then the order of taper p. Usually, the
estimation methods of d, especially the semiparametric ones are used only for d < 1

2
, how-

ever, as mentioned above, by using a taper with an adequate order p, we obtain a consistent
and asymptotically normal estimator in the nonstationary case. By simulation, we showed
that, the best choice of the order of taper is

[
d + 1

2

]
+ 1.

Table 13 Results of the stationarity tests

ADF P.P KPSS
k k k

2 3 4 2 3 4 2 3 4
Xt −2.241 −2.552 −2.241 2.716 2.328 2.045 2.697 2.026 1.624

France 4Xt −6.311∗ −5.086∗ −4.240∗ ∗−9.158 −9.295∗ −9.513∗ 1.801 1.424 1.184
Xt −0.309 −0.493 −0.607 −0.412 −0.469 −0.520 2.173 1.633 1.309

Italy 4Xt −5.651∗ −4.720∗ −3.959∗ −8.343∗ −8.431∗ −8.728∗ 2.690 2.097 1.723
Xt −1.530 −1.452 −1.251 0.677 0.540 0.438 2.833 2.129 1.706

Germany 4Xt −11.320∗ −9.038∗ −8.024∗ −17.370∗ −17.630∗ −17.870∗ 0.834 0.723 0.648
Xt −0.038 −0.174 −0.261 −0.614 −0.656 −0.696 2.150 1.616 1.295

U.S. 4Xt −6.503∗ −5.437∗ −4.672∗ −9.562∗ −9.742∗ −9.928∗ 2.164 1.709 1.422
* indicates that the hypothesis of stationarity is accepted.

Notes: 1. For the ADF test, k represents the number of lagged differences, and for the
PP and KPSS tests, it is used for the construction of the spectral estimator.

2. For the ADF and PP tests, the critical values are -3.98(1%), -3.42(5%) and -
3.13(10%), and for the KPSS one they are 0.216(1%), 0.146(5%) and 0.119(10%).

For different countries, the stationarity tests for the first differenced series give contra-
dictory results, they show evidence of stationarity (PP and ADF) and unit root (KPSS).

21To test the stationarity, we use the Augmented Dickey-Fuller (ADF) (Dickey and Fuller (1979)), the
Phillips and Perron (1988) (PP) and the KPSS (Kwiatkowski et al. (1992)) tests.
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These contradictory statistical results coupled with the insights produced by examining the
correlograms and the periodograms suggest that, a fractionally integrated model allowing for
long memory is plausible for these once differenced series. These tests lead us to conclude
that for the four series, p = 2, and then we apply the Robinson (1995b) method to determine
the estimates of d.22 The results are summarized in the following table.

Table 14 Results of the Robinson (1995b) estimators, p = 2.

m France Italy Germany U.S
n0.5 2.142 1.807 1.742 2.226
n0.55 1.951 1.770 1.713 2.075
n0.60 1.893 1.887 1.556 1.881
n0.65 1.793 1.864 1.446 1.671
n0.70 1.652 1.606 1.339 1.581
n0.75 1.646 1.564 1.368 1.569
n0.80 1.618 1.588 1.339 1.603

These results show that d̂ changes a lot with the parameter m, so, we can conclude that
there is a serious short-run effects and hence the appropriate m should be chosen to be small.
Based on figure 3, we see that moptimal is n0.597 for an ARFIMA (1, d, 0) process and n0.605

for an ARFIMA (0, d, 1) process. In our empirical application, we choose moptimal = n0.6,
hence23 d̂ = 1.893 for France, d̂ = 1.887 for Italy, d̂ = 1.556 for Germany and d̂ = 1.881 for
U.S..

We can also verify the existence of short-run effects by testing the adequacy of the model.
So, we apply a diagnostic tests to the residuals. First, we truncate the filter of equation (2.2)
in the following way

(1−B)d̂ =
k∑

j=0

τ̂j

(
d̂
)
Bj, τ̂j

(
d̂
)

=
j − 1− d̂

j
τ̂j−1

(
d̂
)
, τ̂0

(
d̂
)

= 1. (5.18)

According to Hassler and Wolters (1995), we choose k so that the following condition
holds ∣∣∣τ̂k−1

(
d̂
)∣∣∣ ≥ 0.005,

∣∣∣τ̂k

(
d̂
)∣∣∣ < 0.005,

then, the residuals ε̂t are given by

ε̂t =
k∑

j=0

τ̂j

(
d̂
)
Xt−j, t = k + 1, ..., n. (5.19)

22We will use different values of the parameter m (n0.5, n0.55, n0.6, n0.65, n0.7, n0.75, n0.8).
23We choose moptimal = n0.6 because it is the value between n0.597 and n0.605.
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Second, we check the residual autocorrelation by using the Ljung and Box (LB) (1978)
statistic, and the normality by using the Shapiro-Wilk (SW) (1965) test. Table 15 indicated
that the residuals are autocorrelated and non-normal, so, the model is not adequate.

To capture the autocorrelation, we fit an ARMA(P, Q) process for ε̂t by using the AIC
criterion. The selected models for Xt for the four countries are given by

(1−B)1.893 (1− 0.148B) CPI − FRt = (1 + 0.713B) εt, (5.20)

(1−B)1.887 (1 + 0.643B) CPI − ITt =
(
1− 0.054B + 0.366B2 + 0.102B3

)
εt, (5.21)

(1−B)1.556 (1− 0.191B) CPI −GEt = (1 + 0.534B) εt, (5.22)

(1−B)1.881 (1 + 0.173B) CPI − USt =
(
1 + 0.398B + 0.121B2 + 0.105B3

+ 0.061B4 − 0.090B5
)
εt. (5.23)

The Ljung and Box (1978) statistics given in table 15,24 confirm the absence of autocor-
relation in the residuals of models ((5.20) , (5.21) , (5.22) and (5.23)). Furthermore, the CPI
series for the four countries are generated by a nonstationary ARFIMA (P, d,Q).

Table 15 Results of specification tests of original and transformed residuals, m = n0.8.

Original residuals
Test France Italy Germany U.S.

86.787 111.787 51.602 93.021
LB (0.000) (0.000) (0.000) (0.000)

0.837 0.933 0.901 0.904
SW (0.000) (0.000) (0.000) (0.000)

Transformed residuals
Test France Italy Germany U.S.

6.636 0.191 0.267 0.010
LB (0.036) (0.909) (0.875) (0.995)

0.899 0.942 0.892 0.935
SW (0.000) (0.000) (0.000) (0.000)

LB is the Ljung and Box test, SW is the Shapiro-Wilk test and the p-values are in the brakets.

6 Concluding Remarks

In this paper, we have studied by Monte Carlo simulations, the effect of order of “Zhurbenko-
Kolmogorov” taper on the properties of three semiparametric estimators: the GPH, the
Robinson (1995a) and the Robinson (1995b) estimators. According to the results we have
observed that the order p of taper has an impact on the bias, standard errors and the mean
squared errors of these three estimators. The smallest MSE is given by p = [d + 1/2] + 1

24See the results of transformed residuals.
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which is considered as an optimal choice. When p < [d + 1/2]+1, the d estimates are always
negatively biased and converge to p.

Besides, the optimal choice of p, one may also choose a best value of m, since for a
pure fractionaly integrated processes, the results obtained with m = n0.5 have large bias
and MSE and they improved with m = n0.8. Whereas, for models with jointly short and
long-run effects, the choice of m must be small.

We conclude that, to get a semiparametric estimators with small bias and MSE, we
must choose an optimal pair (p, m). The short-memory component has also an effect on
the properties of these estimators, so when φ and θ approach 1, the bias and MSE become
larger, even if we have an appropriate choice of p and m. The comparison of the results of
three estimators showed that the best ones are obtained for Robinson (1995b) estimator.

Acknowledgements: The authors would like to thank the editor and the anony-
mous referee for helpful comments and valuable suggestions. They also thank Philipp Sib-
bertsen for his answers on some questions about the procedure of tapering and Karim M.
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